Math 254a: Zeta Functions and L-series

نویسنده

  • BRIAN OSSERMAN
چکیده

Theorem 1.1. Let G be a group of Dirichlet characters modulo n, and KG the associated field. Fix a prime number p, and let H1 ⊂ H2 ⊂ G be the groups of χ such that χ(p) = 1 or χ(p) 6= 0 respectively. Then G/H2 ∼= IKG,p ⊂ Gal(KG/Q), and G/H1 ∼= DKG,p (note that these are non-canonical isomorphisms). We are now ready to prove the theorem on factoring Dedekind zeta functions of sub-cyclotomic fields in terms of Dirichlet L-series. Theorem 1.2. Given a number field K ⊂ Q(ζn), let GK be the corresponding group of Dirichlet characters modulo n. Then for s > 1 we have

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Math 254a: Dirichlet L-series

1 n : (n, f) = 1 0 : otherwise , the absolute convergence for s > 1 follows from the convergence of ζQ(s) for s > 1. (ii) Given the convergence for s > 1, the proof of the product expansion is identical to the case ζQ(s). We also observe that L(s, χ1) = ζQ(s). As we will see, for non-trivial characters, the L-series behave rather differently. We will analyze these functions further, but first w...

متن کامل

Math 254a: Evaluating the L-series

We had fixed the notation ζ f = e 2πi f , and τ (χ) = f k=1 χ(k)ζ k f , if χ has conductor f. We want to show: Theorem 0.1. Let χ be a Dirichlet character of conductor f > 1. Then for χ even, we have L(1, χ) = −

متن کامل

An improved upper bound for the error in the zero-counting formulae for Dirichlet L-functions and Dedekind zeta-functions

This paper contains new explicit upper bounds for the number of zeroes of Dirichlet L-functions and Dedekind zeta-functions in rectangles.

متن کامل

Improvements to Turing's method

This article improves the estimate of the size of the definite integral of S(t), the argument of the Riemann zeta-function. The primary application of this improvement is Turing’s Method for the Riemann zeta-function. Analogous improvements are given for the arguments of Dirichlet L-functions and of Dedekind zeta-functions.

متن کامل

A procedure for generating infinite series identities

A procedure for generating infinite series identities makes use of the generalized method of exhaustion by analytically evaluating the inner series of the resulting double summation. Identities are generated involving both elementary and special functions. Infinite sums of special functions include those of the gamma and polygamma functions, the Hurwitz Zeta function, the polygamma function, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005